Motivations and Perceptions of Students from Island Schools in Chile about STEAM Education.

Main Article Content

Ferrada F. Cristian, PhD.
Kroff T. Francisco, Mgs.

Abstract

This article analyzes the motivations and perceptions of students in island schools in Chiloé regarding STEAM (Science, Technology, Engineering, Art, and Mathematics) education. There is a high level of interest in STEAM activities, especially those that include practical components and teamwork. However, gender stereotypes persist that limit female participation in areas such as technology. Despite this, most students recognize the equal abilities of girls and boys in mathematics and science. Including varied activities and promoting an inclusive environment are crucial to fostering equitable participation in STEAM. The study suggests that early exposure and ongoing support are essential to increasing female participation in these areas and highlights the importance of educational strategies that challenge gender stereotypes and promote diversity and equity.

Article Details

How to Cite
Ferrada Ferrada, C., & Kroff Trujillo, F. . (2025). Motivations and Perceptions of Students from Island Schools in Chile about STEAM Education. Revista De investigación, formación Y Desarrollo: Generando Productividad Institucional, 13(1), 55-69. https://doi.org/10.34070/rif/.v13.i1.2025.405.55-69
Section
Artículos
Author Biographies

Ferrada F. Cristian, PhD., Universidad de Los Lagos, Chile

Profesor Universidad de los Lagos, sede Castro

Profesor de Educación General Básica, Mención Educación Matemática, Universidad Católica del Maule. 

Postítulo en didáctica de las matemáticas  Freie Universitat Berlin, Alemania.

Máster en Didáctica de la Matemática, Universidad de Granada. España

Doctor en Ciencias de la Educación, Universidad de Granada, España. Línea de Investigación: Didáctica de las Ciencias Experimentales.
Orcidhttps://orcid.org/0000-0003-2678-7334
ResearchGatehttps://www.researchgate.net/profile/Cristian_Ferrada

Kroff T. Francisco, Mgs., Universidad de Los Lagos

Académico en la Universidad de Los Lagos, Chile, con  trayectoria en el ámbito de la educación y la investigación. Su trabajo se centra en el desarrollo de metodologías innovadoras que promueven el aprendizaje significativo en los estudiantes, con un enfoque particular en la integración de tecnologías en el aula.

How to Cite

Ferrada Ferrada, C., & Kroff Trujillo, F. . (2025). Motivations and Perceptions of Students from Island Schools in Chile about STEAM Education. Revista De investigación, formación Y Desarrollo: Generando Productividad Institucional, 13(1), 55-69. https://doi.org/10.34070/rif/.v13.i1.2025.405.55-69

References

Aguilera, D., Lupiáñez, J., Perales-Palacios, F., Vílchez-González, J. (2024). IDEARR Model for STEM Education—A Framework Proposal. Education Sciences. 14(6):638. https://doi.org/10.3390/educsci14060638

Bertrand, M., y Namukasa, I. (2023). "A pedagogical model for STEAM education", Journal of Research in Innovative Teaching & Learning, 16(2), 169-191. https://doi.org/10.1108/JRIT-12-2021-0081

Breiner, J., Harkness, S., Johnson, C., & Koehler, C. (2012). What is STEM? A discussion about conceptions of STEM in education and partnerships. School Science and Mathematics, 112(1), 3–11. https://doi.org/10.1111/j.1949-8594.2011.00109.x

Brühwiler, C., & Blatchford, P. (2011). Effects of class size and adaptive teaching competency on classroom processes and academic outcome. Learning and Instruction, 21(1), 95–108. https://doi.org/10.1016/j.learninstruc.2009.11.004

Bybee, R. (2013). The case for STEM education: Challenges and opportunities. National Science Teachers Association.

Cohen, L., Manion, L., & Morrison, K. (2009). Research methods in education. Routledge. https://doi.org/10.4324/9780203224342

Connolly, T., Boyle, E., MacArthur, E., Hainey, T., & Boyle, J. (2012). A systematic literature review of empirical evidence on computer games and serious games. Computers & Education, 59(2), 661–686. https://doi.org/10.1016/j.compedu.2012.03.004

Dare, E., Keratithamkul, K., Hiwatig, B., & Li, F. (2021). Beyond content: The role of STEM disciplines, real-world problems, 21st century skills, and STEM careers within science teachers’ conceptions of integrated STEM education. Education Sciences, 11(11), 737. https://doi.org/10.3390/educsci11110737

DeCoito, I. (2024). STEM Education: Curriculum and Pedagogy. In: Global Perspectives on STEM Education. Springer, Cham. https://doi.org/10.1007/978-3-031-60676-2_4

Duschl, R. (2019). Learning progressions: Framing and designing coherent sequences for STEM education. Disciplinary and Interdisciplinary Science Education Research, 1(1), 1–10. https://doi.org/10.1186/s43031-019-0005-x

English, L. (2016). STEM education K-12: Perspectives on integration. International Journal of STEM Education, 3(1), Article 3. https://doi.org/10.1186/s40594-016-0036-1

English, L. (2023). Ways of thinking in STEM-based problem solving. ZDM—Mathematics Education. 55(7), 1219–1230. https://doi.org/10.1007/s11858-023-01474-7

Ferrada C., Díaz-Levicoy, D, y Carrillo-Rosua, J. (2021) Integración de las actividades STEM en

libros de texto. Revista Fuentes, 23(1), 91–107.

Ferrada, C., & Díaz–Levicoy, D. (2022). STEM and Robotics in Elementary Education: A Teacher’s view to a classroom experience. 17th Iberian Conference on Information Systems and Technologies (CISTI). https://doi.org/10.23919/cisti54924.2022.9820525

Ferrada, C., Carrillo-Rosúa, J., Díaz-Levicoy, D., & Silva-Díaz, F. (2021). Robótica aplicada al aula

en Educación Primaria: un caso en el contexto español. Sociology and

Technoscience, 11(Extra_2), 240-259.

Ferrada, C., Carrillo-Rosúa, J., Díaz–Levicoy, D., & Silva-Díaz, F. (2023). Una ciudad sostenible STEM para mejorar la actitud hacia las ciencias las y matemáticas en estudiantes de 5° y 6° de educación primaria de España. Investigações em ensino de ciências, 28(1), 111-126. https://doi.org/10.22600/1518-8795.ienci2023v28n1p111

Ferrada, C., Carrillo-Rosúa, J., Díaz–Levicoy, D., & Silva-Díaz, F. (2020). La robótica desde las áreas STEM en educación primaria: una revisión sistemática. Education in the Knowledge Society, 21, 18. https://doi.org/10.14201/eks.22036.

Ferri, R. (2006). Theoretical and empirical differentiations of phases in the modelling process. ZDM, 38(2), 86–95. https://doi.org/10.1007/bf02655883

Fishman, B., & Krajcik, J. (2003). What does it mean to create sustainable science curriculum innovation? Science Education, 87(4), 564–573. https://doi.org/10.1002/sce.10088

Flanagan, B., Hourigan, M., & Leavy, A. (2024). Primary teachers’ learning experiences of integrated STEM education. Journal of Early Childhood Research, 0(0). https://doi.org/10.1177/1476718X241257335

Goos, M. (2024). Reflecting on the Contribution of Mathematics to STEM Education. In: Anderson, J., Makar, K. (eds) The Contribution of Mathematics to School STEM Education. Springer, Singapore. https://doi.org/10.1007/978-981-97-2728-5_19

Hernández Sampieri, R., Fernández Collado, C. & Baptista, M. (2010). Metodología de la investigación (Quinta edición). Ciudad de México: McGraw-Hill.

Holmlund, T., Lesseig, K., & Slavit, D. (2018). Making sense of “STEM education” in K-12 contexts. IJ STEM Ed, 5(32). https://doi.org/10.1186/s40594-018-0127-2

Hynes, B., Costin, Y., & Richardson, I. (2023). Educating for STEM: Developing entrepreneurial thinking in STEM (Entre-STEM). In S. Kaya-Capocci & E. Peters-Burton (Eds.), Enhancing entrepreneurial mindsets through STEM education (15), 165–194. Springer.

Kitchen, J., Sonnert, G., & Sadler, P. (2018). The impact of college‐ and university‐run high school summer programs on students’ end of high school STEM career aspirations. Science Education, 102(3), 529–547. https://doi.org/10.1002/sce.21332

Leung, A. (2019). Exploring STEM pedagogy in the mathematics classroom: A tool-based experiment lesson on estimation. International Journal of Science and Mathematics Education, 17(7), 1339–1358. https://doi.org/10.1007/s10763-018-9924-9

Li, Y., Wang, K., Xiao, Y., & Froyd, J. (2020). Research and trends in STEM education: A systematic review of journal publications. International Journal of STEM Education, 7(11). https://doi.org/10.1186/s40594-020-00207-6

Loof, H., Pauw, J., & Petegem, P. (2021). Engaging Students with Integrated STEM. Education: a Happy Marriage or a Failed Engagement? International Journal of Science and Mathematics Education, 20(2). https://10.1007/s10763-021-10159-0

Martínez, C., Gómez, M., Borchardt, M., & Garzón, M. (2022). Hacia un currículum emancipador de las Ciencias de la Computación. Revista Latinoamericana de Economía Y Sociedad Digital, 3. https://doi.org/10.53857/LBUS5649

Martín-Páez, T., Aguilera, D., Perales-Palacios, F., & Vílchez-González, J. (2019). What are we talking about when we talk about STEM education? A Review of Literature. Science Education, 103(4), 799–822. https://doi.org/10.1002/sce.21522

Merriam, S. y Tisdell, E. (2015). Qualitative research: A guide to design and implementation. John Wiley & Sons.

Nadelson, L., Callahan, J., Pyke, P., Hay, A., Dance, M. y Pfiester, J. (2013). Teacher STEM perception and preparation: Inquiry-based STEM professional development for elementary teachers. The Journal of Educational Research, 106(2), 157-168.

National Research Council. (2014). STEM integration in K-12 education: Status, prospects, and an agenda for research. National Academies Press. https://doi.org/10.17226/18612

NRC. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas (p. 13165). National Academies Press. https://doi.org/10.17226/13165

Organisation for Economic Co-operation and Development [OECD] (2018). PISA 2022 mathematics framework (draft). https://www.oecd.org/pisa/publications/pisa-2021-assessment-and-analytical-framework.htm

Ortiz-Revilla, J., Greca, I., & Arriassecq, I. (2022). A Theoretical Framework for Integrated STEM Education. Science & Education, 31(2), 383–404. https://doi.org/10.1007/s11191-021-00242-x

Pleasants, J., Tank, K., & Olson, J. (2021). Conceptual connections between science and engineering in elementary teachers’ unit plans. International Journal of STEM Education, 8, 1–17. https://doi.org/10.1186/s40594-021-00274-3

Quinn, C., Reid, J., & Gardner, G. (2020). S+ T+ M= E as a convergent model for the nature of STEM. Science & Education, 29(4), 881–898. https://doi.org/10.1007/s11191-020-00130-w

Schoenherr, J., & Schukajlow, S. (2024). Preservice teachers’ judgments of students’ expectations of success and task values: Close relations with their personal task motivation. Teaching and Teacher Education, 148, 104659. https://doi.org/10.1016/j.tate.2024.104659

Silva-Díaz, F., Fernández-Ferrer, G., Vázquez-Vílchez, M., Ferrada, C., Narváez, R., & Carrillo-Rosúa, J. (2022). Tecnologías Emergentes en la Educación STEM. Análisis bibliométrico de publicaciones en Scopus y WOS (2010-2020). Bordón, 74(4), 25-44. https://doi.org/10.13042/bordon.2022.94198

Snyder, M. (2018). A century of perspectives that influenced the consideration of technology as a critical component of STEM education in the United States. The Journal of Technology Studies, 44(2), 42–57.

Steffensen, L. (2024). Developing Responsible Citizenship Through Integrated STEM Education Activities. In: Anderson, J., Makar, K. (eds) The Contribution of Mathematics to School STEM Education. Springer, Singapore. https://doi.org/10.1007/978-981-97-2728-5_17

Stohlmann, M. (2020). STEM integration for high school mathematics teachers. Journal of Research in STEM Education, 6(1), 52–63. https://doi.org/10.51355/jstem.2020.71

Stohlmann, M., Moore, T., & Roehrig, G. (2012). Considerations for teaching integrated STEM education. Journal of Pre-College Engineering Education Research., 2(1), 28–34. https://doi:10.5703/1288284314653.

Tarango, J., Armendáriz-Núñez, E., & González-Quiñones, F. (2024). Cultura científica, alfabetización científica y perfiles de ingreso-formación-egreso: un análisis exploratorio en programas de posgrados de alta calidad en México. Ibersid: Revista De Sistemas De información Y documentación, 18(1), 13–24. https://doi.org/10.54886/ibersid.v18i1.4944

Toma, R., Yánez-Pérez, I., & Meneses-Villagrá, J. (2024). Towards a socio-constructivist didactic model for integrated STEM education. Interchange. https://doi.org/10.1007/s10780-024-09513-2

Triantafyllou S., Sapounidis T., Farhaoui Y. (2024) Thinking in Education: A systematic literature review. Salud, Ciencia y Tecnología. Gamification and Computational - Serie de Conferencias. 3:659. https://doi.org/10.56294/sctconf2024659

Vasquez, J. (2015). STEM: Beyond the acronym. Educational Leadership, 72(4), 10–15.